
From: bayko@hercules.cs.uregina.ca (J. Bayko)
Date: 12 Jun 92 18:49:18 GMT
Newsgroups: alt.folklore.computers,comp.arch
Subject: Great Microprocessors of the Past and Present

I had planned to submit an updated version of the Great Microprocessor
list after I’d completed adding new processors, checked out little bits,
and so on...

That was going to take a while...
But then I got to thinking of all the people stuck with the origional

error-riddled version. All these poor people who’d kept it, or perhaps
placed in in an FTP site, or even - using it for reference??!

In good conscience, I decided I can’t leave that erratic old version
lying out there, where people might think it’s accurate. So here is an
interim release. There will be more to it later - the 320xx will be
included eventually, for example. But at least this has been debugged
greatly.

Enjoy...

John Bayko.

—

Great Microprocessors of the Past and Present (V 3.2.1)

Section One: Before the Great Dark Cloud.
—————————

Part I: The Intel 4004 (1972)

The first single chip CPU was the Intel 4004, a 4-bit processor meant for
a calculator. It processed data in 4 bits, but its instructions were
8 bits long. Internally, it featured four 12 bit(?) registers which acted as
an internal evaluation stack. The Stack Pointer pointed to one of these
registers, not a memory location (only CALL and RET instructions operated on
the Stack Pointer). There were also sixteen 4-bit (or eight 8-bit) general
purpose registers

The 4004 had 46 instructions. Intel created an 8-bit version of this, the
8008 (intended for a terminal controller).
[for additional information, see Appendix B]

Part II: The Intel 4040 and 8080

The 4040 was compatible with the 4004 instruction set - the 4040 had 60
instructions, which included the 46 4004 instructions. The 8080 was similar to
the 4040, except being 8 bits wide.

The 8080 had a 16 bit address bus, and an 8 bit data bus. Internally it
had seven 8 bit registers (six which could also be combined as three 16 bit
registers), a 16 bit stack pointer (the stack was stored in memory, not in an
internal register set), and 16 bit program counter. It also had several I/O
ports - 256 of them, so I/O devices could be hooked up without taking away or
interfering with the addressing space.

�

Part III: The Zilog Z-80 - End of the 8-bit line (July 1976)

The Z-80 was intended to be an improved 8080 (as was Intel’s own 8085),
and it was - vastly improved. It also used 8 bit data and 16 bit addressing,
and could execute all of the 8080 op codes, but included 80 more, instructions
that included 1, 4, 8 and 16 bit operations and even block move and block I/O
instructions. The register set was doubled, with two banks of registers that
could be switched between. This allowed fast operating system or interrupt
context switches. The Z-80 also featured vectored interrupts.

Like many processors (including the 8085), the Z-80 featured many
undocumented op codes. Chip area near the edge was used for added
instructions, but fabrication made the failure of these high. Instructions
that often failed were just not documented, increasing chip yield. Later
fabrication made these more reliable.

But the thing that really made the Z-80 popular was actually the memory
interface - the CPU generated it’s own RAM refresh signals, which meant easier
design and lower system cost. That and it’s 8080 compatability, and CP/M, the
first standard microprocessor operating system, made it the first choice of
many systems.

Part IV: The 650x, Another Direction (1975-ish)

Shortly after the 8080, Motorola introduced the 6800. Some designers then
started MOS Technologies, which introduced the 650x series, based on 6800
design (not a clone for legal reasons), and including the 6502 used in
Commodores, Apples and Ataris. Steve Wozniak described it as the first chip
you could get for less than a hundred dollars (a quarter of the 6800 price).

Unlike the 8080 and its kind, the 6502 had very few registers. It was an
8 bit processor, with 16 bit address bus. Inside was one 8 bit data register,
and two 8 bit index registers and an 8 bit stack pointer (stack was preset
from address 256 to 511). It used these index and stack registers
effectively, with more addressing modes, including a fast zero-page mode that
accessed memory addresses from address 0 to 255 with an 8-bit address that
speeded operations (it didn’t have to fetch a second byte for the address).

The 650x also had undocumented instructions.
As a side point, Apples, which were among the first microcomputers

introduced, are still made, now using the 65816, which is compatable with the
6502, but has been expanded to 16 bits (including index and stack registers,
and a 16-bit direct page register), and a 24-bit address bus. The Apple II
line, which actually includes the Apple I, is the longest existing line of
microcomputers.

Back when the 6502 was introduced, RAM was actually faster than CPUs, so
it made sense to optimize for RAM access rather than increase the number of
registers on a chip.

Part V: The 6809, extending the 650x

The 6800 from Motorola was essentially the same design as the 6502, but
the latter left out one data register and added one index register, a minor
change. But the 6809 was a major advance over both - at least relatively.

The 6809 had two 8 bit accumulators, rather than one in the 6502, and
could combine them into a single 16 bit register. It also featured two index
registers and two stack pointers, which allowed for some very advanced
addressing modes. The 6809 was source compatible with the 6800, even though

�

the 6800 had 78 instructions and the 6809 only had around 59. Some
instructions were replaced by more general ones which the assembler would
translate, and some were even replaced by addressing modes.

Other features were one of the first multiplication instructions of the
time, 16 bit arithmatic, and a special fast interrupt. But it was also highly
optimized, gaining up to five times the speed of the 6800 series CPU. Like the
6800, it included the undocumented HCF (Halt Catch Fire) bus test instruction.

The 6800 lived on as well, becoming the 6801/3, which included ROM, some
RAM, a serial I/O port, and other goodies on the chip. It was meant for
embedded controllers, where the part count was to be minimized. The 6803 led
to the 68HC11, and that was extended to 16 bits as the 68HC16. But the 6809
was a much faster and more flexible chip, particularly with the addition of
the OS-9 operating system.

Of course, I’m a 6809 fan myself...

As a note, Hitachi produced a version called the 6309. Compatible with the
6809, it added 2 new 8-bit registers that could be added to form a second 16
bit register, and all four 8-bit registers could form a 32 bit register. It
also featured division, and some 32 bit arithmatic, and was generally 30%
faster in native mode. This information, suprisingly, was never published by
Hitachi.

Part VI: Advanced Micro Devices Am2901, a few bits at a time

Bit slice processors were modular processors. Mostly, they consisted of an
ALU of 1, 2, 4, or 8 bits, and control lines (including carry or overflow
signals usually internal to the CPU). Two 4-bit ALUs could be arranged side by
side, with control lines between them, to form an ALU of 8-bits, for example.
A sequencer would execute a program to provide data and control signals.

The Am2901, from Advanced Micro Devices, was a popular 4-bit-slice
processor. It featured sixteen 4-bit registers and a 4-bit ALU, and operation
signals to allow carry/borrow or shift operations and such to operate across
any number of other 2901s. An Am2910 address sequencer could provide control
signals with the use of custom microcode in ROM.

The Am2903 featured hardware multiply support.

Section Two: Forgotten/Innovative Designs before the Great Dark Cloud
——————————————————–

Part I: RCA 1802, wierdness at its best (1974)

The RCA 1802 was an odd beast, extremely simple and fabricated in CMOS,
which allowed it to run at 6.4 MHz (very fast for 1974) or suspended with the
clock stopped. It was an 8 bit processor, with 16 bit addressing, but the
major features were it’s extreme simplicity, and the flexibility of it’s large
register set. Simplicity was the primary design goal, and in that sense it was
one of the first RISC chips.

It had sixteen 16-bit registers, which could be accessed as thirty-two
8 bit registers, and an accumulator D used for arithmatic and memory access -
memory to D, then D to registers, and vice versa, using one 16-bit register
as an address. This led to one person describing the 1802 as having 32 bytes
of RAM and 65535 I/O ports. A 4-bit control register P selected any one
general register as the program counter, while control registers X and N
selected registers for I/O Index, and the operand for current instruction. All
instructions were 8 bits - a 4-bit op code (total of 16 operations) and 4-bit

�

operand register stored in N.
There was no real conditional branching, no subroutine support, and no

actual stack, but clever use of the register set allowed these to be
implimented - for example, changing P to another register allowed jump to a
subroutine. Similarly, on an interrupt P and X were saved, then R1 and R2 were
selected for P and X until an RTI restored them.

A later version, the 1805, was enhanced, addind several Forth language
primitives. Forth was commonly used in control applications.

Apart from the COSMAC microcomputer kit, the 1802 saw action in some
video games from RCA and Radio Shack, and the chip is the heart of the
Voyager, Viking and Galileo probes. One reason for this is that the 1802 was
also fabricated mounted on saphire, which leads to radiation and static
resistance, ideal for space operation.

Part II: Fairchild F8, Register windows

The F8 was an 8 bit processor. The processor itself didn’t have an address
bus - program and data memory access were contained in separate units, which
reduced the number of pins, and the associated cost. It also featured 64
registers, accessed by the ISAR register in cells (windows) of eight, which
meant external RAM wasn’t always needed for small applications. In addition,
the 2-chip processor didn’t need support chips, unlike others which needed
seven or more.

The use of the ISAR register allowed a subroutine to be entered without
saving a bunch of registers, speeding execution - the ISAR would just be
changed. Special purpose registers were stored in the second cell (regs 9-15),
so the first window would be used for global variables.

The windowing concept was useful, but only the register pointed to by the
ISAR could be accessed, limiting usefulness - to access another register the
ISAR was incremented or decremented through the window.

Part III: SC/MP, early advanced multiprocessing (April 1976)

The National Semiconductor SC/MP, (nicknamed "Scamp") was a typical
well-designed 8 bit processor intended for control applications. It featured
16 bit addressing, with 12 address lines and 4 lines borrowed from the data
bus (it was common to borrow lines from the data bus for addressing).
Internally, it included three index registers.

The unique feature was the ability to completely share a system bus with
other processors. Most processors of the time assumed they were the only ones
accessing memory or I/O devices. Multiple SC/MPs could be hooked up to the
bus, as well as other intelligent devices, such as DMA controllers. A control
line could be chained along the processors to allow cooperative processing.

This was very advanced for the time, compared to other CPUs. However, the
SC/MP had no stack or subroutine instructions, though a stack could be
emulated to some degree. It’s intent was for embedded control, and these
features were omitted for cost reasons. It was also bit serial internally to
keep it cheap.

Part IV: F100-L, a self expanding design

The Ferranti F100-L was designed by a British company for the British
Military. It was an 8 bit processor, with 16 bit addressing, but it could only

�

access 32K of memory (1 bit for indirection).
The unique feature of the F100-L was that it had a complete control bus

available for a coprocessor that could be added on. Any instruction the F100-L
couldn’t decode was sent directly to the coprocessor for processing.
Applications for coprocessors at the time were limited, but the idea is still
used in modern processors. This coprocessor design was adapted by other
processors, such as the National Semiconductor 320xx series, which included
FPU, MMU, and other coprocessors that could just be added to the CPU’s
coprocessor bus in a chain. Other units not forseen could be added later.

The NS 320xx series was the predecessor of the Swordfish processor,
described later.

Part V: The Western Digital 3-chip CPU (June 1976)

The Western Digital MCP-1600 was probably the most flexible processor
available. It consisted of at least four separate chips, including the control
circutry unit, the ALU, two or four ROM chips with microcode, and timing
circuitry. It doesn’t really count as a microprocessor, but neither do
bit-slice processors (AMD 2901).

The ALU chip contained twenty six 8 bit registers and an 8 bit ALU, while
the control unit supervised the moving of data, memory access, and other
control functions. The ROM allowed the chip to function as either an 8 bit
chip or 16 bit, with clever use of the 8 bit ALU. Even more, microcode allowed
the addition of Floating Point routines, simplifying programming (and possibly
producing a Floating Point Coprocessor).

Two standard microcode ROMS were available. This flexibility was one
reason it was also used to impliment the LSI-11 processor as well as the WD
Pascal Microengine.

Part VI: Intel 8048, Harvard bus

The MCS-48 was a microcontroller familly, not a single microprocessor, but
did feature a separate data and program bus, known as Harvard Architecture. In
theory, It allows simultaneous reading of data while the next instruction is
fetched, allowing an increase in speed. In this case, its purpose was to allow
different size data (RAM) and program (usually ROM) memory.

In other aspects as well, the MSC-48 series was small, featuring only a
single 8 bit register, around 4K of program memory, and 256 bytes of data
memory (organized in register pages, like the F8 processor). It did have stack
and subroutine operations, but the 256 byte memory limit made that limited.

Part VII: Motorolla MC14500B ICU, one bit at a time

Probably the limit in small processors was the 1 bit 14500B from Motorola.
It had a 4 bit instruction, and controlled a single signal line for
application control. It had no address bus - that was an external unit that
was added on. Another CPU could be used to feed control instructions to the
14500B in an application.

It had only 16 pins, less than a typical RAM chip, and ran at 1 MHz.

Section Three: The Great Dark Cloud Falls: IBM’s Choice.
—————————————-

Part I: TMS 9900, first of the 16 bits (June 1976)

�

One of the first true 16 bit microprocessors was the TMS 9900, by Texas
Instruments. It was designed as a single chip version of the TI 990
minicomputer series, much like the 12 bit Intersil 6100 was a single chip
PDP-8E, used in the DECmate, DEC’s competition for the IBM PC. Because of
this, the TMS 9900 had a mature, well thought out design.

It had a 15 bit address space and two internal 16 bit registers. One
unique feature, though, was that all its registers were actually kept in
memory - this included stack pointers and the program counter. A single
workspace register pointed to the register set in RAM, so when a subroutine
was entered or an interrupt was processed, only the single workspace register
had to be changed - unlike some CPUs which required dozens or more register
saves before acknowleging a context switch.

This was feasable at the time because RAM was faster than the CPUs. A few
modern designs, such as the INMOS Transputers, use this same design using
caches or rotating buffers, for the same reason of improved context switches.
Some chips of the time, such as the 650x series had a similar philosophy,
using index registers, but the TMS 9900 went the farthest in this direction.

That wasn’t the only positive feature of the chip. It had good interrupt
handling features and very good instruction set. In typical comparisons with
the Intel 8086, the TMS9900 had smaller and much faster programs. The only
disadvantage was the small address space and need for fast RAM.

Despite the very poor support from Texas Instruments, the TMS 9900 had
the potential at one point to surpass the 8086 in popularity.

Part II: Zilog Z-8000, another direct competitor.

The Z-8000 was introduced not long after the 8086, but had superior
features. It was basically a 16 bit processor, but could address up to 23
bits in some versions by using segmentation. The segment simply held the
upper 7 bits for the register. There was also an unsegmented version, but both
could be extended further with an additional MMU that used paging and 64
segment registers.

Internally, the Z-8000 had sixteen 16 bit registers, but register size
and use were exceedingly flexible. The Z-8000 registers could be used as
sixteen 8 bit registers (only the first half were used like this), sixteen
16-bit registers, eight 32 bit registers, or four 64 bit registers, and
included 32-bit multiply and divide. They were all general purpose registers -
the stack pointer was typically register 15, with register 14 holding the
segment (you could just access it as a 32 bit register for address
calculations.

The Z-8000 featured two modes, one for the operating system and one for
user programs. The user mode prevented the user from messing about with
interrupt handling and other potentially dangerous stuff.

Finally, like the Z-80, the Z-8000 featured automatic RAM refresh
circuitry. Unfortunately it was somewhat slow, but the features generally made
up for that. Initial bugs also hindered its acceptance. There was a radiation
resistant military version.

A later version, the Z-80000, was expanded to 32 bits internally.

Part III: Motorola 68000, a refined 16/32 bit CPU

The 68000 was actually a 32 bit architecture internally, but 16 bit
externally for packaging reasons. It also included 24 bit addressing, without

�

the use of segment registers. That meant that a single directly accessed array
or structure could be larger than 64K in size. Addresses were computed as 32
bit, but the top 8 bits were cut to reduce costs. No segments made programming
the 68000 easier than competing processors.

Looking back, it was logical, since most 8 bit processors featured direct
16 bit addressing without segments.

The 68000 had sixteen registers, split into data and address registers.
One address register was reserved for the Stack Pointer. Both types of
registers could be used for any function except for direct addressing. Only
address registers could be used as the source of an address, but data
registers could provide the offset from an address.

Like the Z-8000, the 68000 featured a supervisor and user mode. There
were two Stack Pointers, one for supervisor and one for user mode. The Z-8000
and 68000 were similar in capabilities, but the 68000 had 32 bit units
internally, making it faster and eliminating forced segmentations. It was
designed for expansion, including specifications for floating point and string
operations (floating point later implimented in the 68040).

Part IV: Intel 8086, IBM’s choice (1978)

The Intel 8086 was based on the design of the 8085, but with enhancements
and as a 16 bit processor. It had a similar register set, and featured a 6
byte prefetch instruction queue for additional speed.

It featured four 16 bit general registers, which could be accessed as
eight 8 bit registers or four 16 bit index registers, and four 16 bit segment
registers. The data registers were often used implicitly by instructions,
complicating register allocation for temporary values. There were also four index registers,

which included the stack pointer.
The segment registers allowed the CPU to access 1 meg of memory through

an odd process. Rather than just supplying missing bytes, as most segmented
processors, the 8086 actually added the segment registers (X 16, or shifted
left 4 bits) to the address. As a strange result, segments overlapped, and it
was possible to have two pointers with the same value point to two different
memory locations, or two pointers with different values pointing to the same
location. Most people consider this a brain damaged design.

Although this was largely acceptable for assembly language, where control
of the segments was complete (it could even be useful then), in higher level
languages it caused constant confusion (ex. near/far pointers). Even worse,
this made expanding the address space to more than 1 meg difficult. A later
version, the 80386, expanded the design to 32 bits, and ’fixed’ the
segmentation, but required extra modes (supressing the new features) for
compatability.

So why did IBM chose the 8086 series when most of the alternatives were so
much better? Apparently IBM’s own engineers wanted to use the 68000, and it
was used later in the forgotten IBM Instruments 9000 Laboratory Computer, but
IBM already had rights to manufacture the 8086, in exchange for giving Intel
the rights to it’s bubble memory designs. Apparently IBM was using 8086s in
the IBM Displaywriter word processor.

Other factors were the 8-bit 8088 version, which could use existing
8085-type components, and allowed the computer to be based on a modified 8085
design. 68000 components were not widely available, though it could use 6800
components to an extent.

Intel bubble memory was on the market for a while, but faded away as

�

better and cheaper memory technologies arrived.

Section Four: Unix and RISC, a New Hope
————————-

Part I: SPARC, an extreme windowed RISC

SPARC, or the Scalable Processor ARChitecture was designed by Sun
Microsystems for their own use. Sun was a maker of workstations, and used
standard 68000-based CPUs and a standard operating system, Unix. Research
versions of RISC processors had promised a major step forward in speed
[See Appendix A], but existing manufacturers were slow to introduce a RISC
type processor, so Sun went ahead and developed its own (based on Berkley’s
design). In keeping with their open philosophy, they licensed it to other
companies, rather than manufacture it themselves.

SPARC was not the first RISC processor. The AMD 29000 (see below) came
before it, as did the MIPS R2000 (based on Stanford’s design) and
Hewlitt-Packard Precision Architecture CPU. Most RISC CPUs are more
conventional, but the SPARC is a good example of extreme RISC philosophies,
originally even forgoing useful multi-cycle instructions like multiply and
divide.

SPARC usually contains about 128 registers, compared to 16 for previous
CISC designs. At each time 32 registers are available - 8 are global, the rest
are allocated in a ’window’ from a stack of registers. The window is moved 16
registers down the stack during a function call, so that the upper and lower 8
registers are shared between functions, to pass and return values, and 8 are
local. The window is moved up on return. This allows functions to be called in
as little as 1 cycle. Registers are loaded or saved only at the top or bottom
of the register stack. Like most RISC processors, global register zero is
wired to zero to simplify instructions, and SPARC is pipelined for
performance.

SPARC is ’scalable’ mainly because the register stack can be expanded, to
reduce loads and saves between functions, or scaled down to reduce interrupt
or context switch time, when the entire 128 register set has to be written to
memory. Function calls are usually much more frequent, so the large register
set is usually a plus.

SPARC is not a chip, but a specification, and so there are various designs
of it. It has undergone revisions, and now has multiply and divide
instructions. Most versions are 32 bits, but there are designs for 64 bit and
superscalar versions. SPARC was submitted to the IEEE society to be considered
for the P1754 microprocessor standard.

Part II: AMD 29000, a flexible register set (1986?)

The AMD 29000 is another RISC CPU descended from the Berkley RISC design.
Like the SPARC design that was introduced shortly later, the 29000 has a large
set of registers split into local and global sets. But though it was
introduced before the SPARC, it has a more elegant method of register
management.

The 29000 has 64 global registers, in comparison to the SPARC’s eight. In
addition, the 29000 allows variable sized windows allocated from the 128
register stack cache. The current window or stack frame is indicated by a
stack pointer, while the caller’s frame is stored in current frame’s register,
like in an ordinary stack. Spills and fills occur only at the ends of the

�

cache, and registers are saved/loaded from the memory stack. This allows
variable window sizes, from 1 to 128 registers. This flexibility, plus the
large set of global registers, makes register allocation easier than in SPARC.

Registers aren’t saved during interrupts, allowing the interrupt routine
to determine whether the overhead is worthwhile. In addition, a form of
register access control is provided. All registers can be protected, in blocks
of 4, from access. These features make the 29000 useful for embedded
applications, which is where most of these processors are used.

Slomewhat more elegant than the SPARC, the AMD 29K can also claim to be
’the most popular RISC processor’.

Part III: Motorola 88000, a conservative RISC

A design that is typical of most current RISC processors is the Motorola
88000 (originally named the 78000). It is a 32 bit processor with Harvard
architecture (separate data and instruction buses). Each bus has a separate
cache, so simultaneous data and instruction access doesn’t conflict. It is
similar to the Hewlett Packard Precision Architecture in design, though
slightly more elegant.

The chip contains thirty two 32 bit registers, and is organized with
separate function units internally - an ALU and a floating point unit in the
88100 version. Other special function units, such as graphics, vector
operations, and such can be added to the design to produce a custom design for
customers. Additional ALU and FPU units can allow a superscalar operation of
the CPU (as in the 88110 version, for example). The function units of the
88100 share the same register set, while the 88110, like most chips, has
a separate set of thirty two 80-bit registers for the FPU.

The ALU typically executes in 1 cycle, but it or the FPU can take several
clock cycles for an operation (ex. multiplication). For performance, the
units are pipelined, so one instruction can be issued each cycle, with the
result appearing several cycles later. To keep track of this latency, the
88000 has a scoreboard register which keeps track of registers, and ensures
the result arrives before operation continues.

In the superscalar 88110, the result from one ALU can be fed directly into
another in the next clock cycle (as opposed to saving to a register first),
saving a clock cycle between instructions. Also, loads and saves are buffered
so the processor doesn’t have to wait, except when loading from a memory
location still waiting for a save to complete. The 88110 version can also
speculatively execute conditional branches in the pipeline. If the speculation
is true, there is no branch delay in the pipeline. Otherwise, the operations
are rolled back from a history buffer (at least 1 cycle penalty), and the
other fork of the branch is taken.

Part IV: Acorn ARM, RISC for home use (1985)

ARM (Advanced RISC Machine) is often praised as one of the most elegant
modern processors in existance. It was meant to be "MIPs for the masses", and
designed as part of a family of chips (ARM - CPU, MEMC - MMU and DRAM/ROM
controller, VIDC - video and DAC, IOC - I/O, timing, interrupts, etc), for the
Archimedes home computer (multitasking OS, windows, etc). It’s made by VLSI
Technologies Inc.

The original ARM2 was a 32 bit CPU, but used 26 bit addressing. The newer
ARM6xx spec is completely 32 bits. It has user, supervisor, and various
interrupt modes (including 26 bit modes for ARM2 compatability) and sixteen

�

registers. There is a multiple load/save instruction (many registers are
shadowed in other modes). The ARM series consists of the ARM6 CPU core, which
can be used as the basis for a custom CPU, the ARM60 base CPU, and the ARM600
which also includes 4K cache, MMU, write buffer, and coprocessor interface. It
can be big- or little-endian.

A unique feature of ARM is that every instruction features a 4 bit
condition code (including ’never execute’). This easily eliminates many
branches and can speed execution. Every instruction has a bit to indicate if
condition codes should be set - an instruction can set them, and several
intervening ininstructions can execute before the codes are used. Addressing
also features a very useful mode (base register indexed by index register
shifted by a constant - ra + rb << k) found in few other processors.

The ARM hasn’t had the development put into it that others have, so there
aren’t superscalar or superpipelined versions, and the clock rate is not
breathtaking. However it wasn’t meant to break speed records, and is a very
elegant, fast and low cost CPU.

Section Five: Just Beyond Scalar
——————

Part I: Intel 860, "Cray on a Chip"

The Intel 860 wasn’t Intel’s first RISC chip - that was the 960, but the
960 was slower, and marketed for embedded control applications. The 860 was
an impressive chip when introduced, able at top speed to perform close to 66
MFLOPS at 33 MHz in real applications, compared to a more typical 5 or 10
MFLOPS at the time. It has lagged behind newer designs, though.

The 860 has several modes, from regular scaler mode to a superscaler mode
that executes two instructions per cycle and a pipelined mode. It can use the
entire 8K data cache as a vector register, in the same way that supercomputers
like Crays do.

The 860 is a 64 bit processor essentially - though it normally uses thirty
two 32 bit registers it has sixteen 64 bit floating point registers. It
contains not only an integer ALU but a FPU, and even more unusual, a 3-D
graphics unit that performs lines, Gouraud shading, Z-buffering for hidden
line removal, and other operations, all in conjunction with the FPU. It has
separate instruction and data busses, and can access 4 G of memory, with
segments. It also includes a Memory Management Unit for virtual storage.

In a single cycle, the 860 can do an integer operation, and a special
multiply and add floating point operation, for a total of three instructions.
Actually getting the chip at top speed usually requires using assembly
language - using standard compilers gives it a speed similar to other
processors. Because of this, it’s best used as a coprocessor, either for
graphics, like the NeXTdimension board, or floating point acceleration, like
add in units for workstations.

Another problem is the difficulty handling interrupts. It is extensively
pipelined, having as many as four pipes going at once, and when an interrupt
occurs, the pipes can spill and lose data unless complex code is used to
clean up. Delays range from 62 cycles (best case) to 50 microseconds (almost
2000 cycles)

Part II: IBM RS/6000 POWER chip

When IBM decided to become a real part of the workstation market (after
its unsuccessful PC/RT based on the ROMP processor), it decided to produce a

�
	

new innovative CPU, based partly on the 801 project that pioneered RISC
theory. RISC normally stands for Reduced Instruction Set Computing, but IBM
calls it Reduced Instruction-Cycle Set Computing, and implimented a complex
processor with more instructions than most CISC processors. They ended up with
was a CPU that actually contains five or seven separate chips.

The chips are the branch unit, fixed point unit, floating point unit, and
either two or four cache chips.

The branch unit is the heart of the CPU, and actually enables up to five
instructions to be executed at once, though three is more common. It contains
the condition code register, performs checks on this register, and also
performs branches. It also dispatches instructions to the fixed or floating
point units. For added speed, it contains its own loop register (for
decrement and branch on zero). The condition code register has eight fields -
two reserved for the fixed and floating point units, the other six settable
separately. This allows a field to be set, then a branch can occur several
instructions later. In addition, the branch unit can speculatively execute
conditional branches, and then cancel the instructions if the branch is not
taken.

The fixed point unit performs integer operations, as well as some complex
string instructions and multiple load and store. The fixed unit contains
thirty two 32 bit registers.

The floating point unit contains thirty two 64 bit registers and performs
all typical floating point operations. In addition, like the Intel 860, the
floating unit has a special multiply and add instruction. The floating unit
performs this operation with up to 162 bits of precision before truncating it
to 64 bits. Often this type of operation can produce over +/-100% error if
too few bits are used. The registers are loaded and stored by the fixed point
unit.

Unlike the Intel 860, the POWER CPU does not need a special mode - the
branch unit actually reschedules instructions to operate faster. It also
handles interrupts reasonably well, and is overall a very good design. It
does, however, violate the RISC philosophy of fewer instructions at over a
hundred, versus only about 34 for the ARM and 52 for the Motorola 88000
(including FPU instructions). A single chip POWER CPU (no separate branch
unit) designed, to be manufactured by IBM and Motorola, qualifies it as a
microprocessor.

Part III: National Semiconductor Swordfish

The Intel 860 is a superscaler chip, but is essentially a VLIW, or Very
Long Instruction Word processor, which means that more than one instruction
is contained in a single instruction word - in this case, two. The IBM POWER
CPU reshedules instructions on the run, which gives it more flexibility, but
it can only execute different types of instructions at the same time - one
integer and one floating point, for example.

The Swordfish chip contains two separate integer units, allowing two
integer instructions to execute at once, along with one floating point
add/subtract and yet another DSP unit for multiplies, for a theoretical total
of four instructions at once.

The CPU is a 32 bit processor, but has a 64 bit data bus for fetching
multiple instructions at once. It features an instruction loader which
functions like the branch unit in the IBM POWER CPU, but lacks the extended
functions - it can’t branch concurrently. It also features a Digital Signal
Processing (DSP) unit to perform multiplies and other DSP operations, and a

���

separate FPU. The DSP also performs single cycle integer multiplies, a task
that usually takes around seven cycles for most integer ALUs.

It is RISC in the sense that it executes instructions in one cycle, but
it doesn’t use register windowing like the SPARC processor. It performs 20
MFLOPS at 50 MHz, which is good compared to other RISC chips, but slow
compared to dedicated DSPs. Still, the FPU and integer units result in most
processing tasks being faster - at 50 MHz the chip runs about 100 MIPS. The
POWER CPU is about as fast, but operates at half the clock speed.

The Swordfish’s neatest features, though, are it’s hardware. It
automatically can adjust it’s data bus size, from 64 bits to 32, 16, or even
8 bits, making it very easy to design for. In addition, it can run from a
50MHz clock, or a 25 MHz clock in which case it multiplies the clock
internally back to 50 MHz. This allows 25MHz parts to be used with it. It
also features two DMA channels and a timer unit.

Part IV: DEC Alpha, Designed for the future (1992)

The DEC Alpha architecture is designed, according to DEC, for a
operational life of 25 years. It doesn’t contain particular innovations
(although the PALcall operation is unusual), but is an elegant blend of
features, selected to ensure no obvious limits to future performance - no
special registers, etc. The 21064 is DEC’s first Alpha chip.

It is a 64 bit chip that doesn’t support 8- or 16-bit operations, but
allows conversions, so no functionality is lost (Most processors of this
generation are similar, but have instructions with implicit conversions).
Alpha 32-bit operations differ from 64 bit only in overflow detection. Oddly,
Alpha does not provide a divide instruction.

One reason for Alpha is to replace DEC’s two previous architectures - the
VAX and MIPS CPUs. To do this, the chip provides both IEEE and VAX floating
point operations. It also features a Privleged Architecture Library (PAL)
calls, a set of programmable macros written in the Alpha instruction set,
similar to the programmable microcode of the Western Digital MCP-1600 or the
AMD Am2910 CPUs. It provides support of various operating systems - VMS, Unix
or Microsoft NT.

Alpha was also designed for the future, including superscalar,
multiprocessing, and high speed clock. Because of this, superscalar
insturcions may be reordered and trap conditions are imprecise. Special
instructions are available to control both occurrences when needed. SPARC also
has a specification for instruction ordering.

Section Six: Wierd and Innovative Chips
————————–

Part I: T-9000, parallel computing (1990)

The INMOS T-9000 is the latest version of the Transputer architecture, a
processor designed to be hooked up to other processors for high speed
parallel processing. The previous versions were the 16 bit T-212 and 32 bit
T-414 and T-800 processors (1985). The T-800 included a 64 bit floating point
unit. They used some RISC principles before it became fashionable, but the
most important feature was that each chip contained 4 serial ports to connect
the chips in a network.

Although the previous chips were fast, the T-9000 is a much extended
design. It starts with an architecture like the T-800. It contains only three

���

registers that are used as an evaluation stack - they are not general purpose.
Instead, like the TMS 9900, it uses memory for registers, and points to the
workspace using a workspace register and cache based on 32 word rotating
buffers. This allows very fast context switching, less than a microsecond.

Unlike when the TMS 9900 was created, the T-9000 is far faster than
memory access, so the CPU has several levels of very high speed caches and
memory levels. It not only speeds process scheduling, is simplifies it enough
that task switching is automated in hardware, unlike most processors. The
Intel 432, described later, also attempted hardware process scheduling, but
was unsuccessful at it. The main cache is 16 K, and is designed for 3 reads
and 1 write simultaneously. The workspace cache allows 2 reads and 1 write
simultaneously.

The T-9000 contains 4 main internal units, the CPU, the VCP, which
performs the communications between chips, the PMI, which manages memory, and
the Scheduler. There’s also an instruction grouper which can schedule five
instruction stages in the most efficient manner. The grouper can start an
instruction in any stage (bypassing unneeded stages) and instructions don’t
need to pass through every stage, and can leave when finished, freeing the
pipeline for other instructions. Instructions themselves are unique in that
frequently used instructions are stored in only a byte, but other instructions
are represented by multiple bytes.

The serial links allow communications at close to the speed of direct
memory access, and the VCP unit allows this to take place without the CPU
being aware of it. Even larger networks can be created with the C104 crossbar
switch, which can connect 32 transputers or other C104 switches into a
network hundreds of thousands of processors large. The C104 acts like a
instant switch, not a network node, so the message is passed through, not
stored.

Like the Swordfish CPU, the T-9000 PMI (Programable Memory Interface) can
adapt to a 64, 32, 16, or 8 bit bus.

Part II: Intel 432, Extraordinary complexity (1980)

The Intel iAPX 432 was a complex, object oriented 32-bit processor that
included high level operating system support in hardware, such as process
scheduling and interprocess messaging. It was intended to be the main Intel
microprocessor - the 80286 was envisioned as a step between the 8086 and the
432. The 432 actually included four chips. The GDP (processor) and IP (I/O
controller) were introduced in 1980, and the BIU (Bus Interface Unit) and MCU
(Memory Control Unit) were introduced in 1983 (but not widely). The GDP complexity was

split into 2 chips, so it wasn’t really a microprocessor.
The GDP was exclusively object oriented - normal linear memory access

wasn’t allowed. It was designed with the Ada programming language in mind. It
had hardware support for data hiding, methods, inheritance, late binding, and
access protection. Unfortunately this meant that every memory access was
checked, which slowed execution (despite some caching). The stack oriented
design meant the GDP had no local user data registers. It supported up to
2^24 segments, each limited to 64K in size, but the object oriented nature of
the design meant that was not a real limitation. Instructions were bit
encoded, ranging from 6 bits to 321 bits long (like the T-9000) and could be
very complex.

The BIU defined the bus. BIUs were designed for multiprocessor support,
allowing up to 63 modules (BIU or MCU) on a bus, and up to 8 independent
buses, allowing memory interleaving, to speed access. The MCU did automatic

�
�

pairity checking and ECC error correcting. The total system was
designed to be fault tolerant to a large degree, and each of these parts
contributes to that reliability.

Despite these advanced features, the 432 didn’t catch on. The main reason
was that it was slow, up to five or ten times slower than a 16-bit 68000. Part
of this was the lack of local data registers, or a significant cache. Part of
this was the fault-tolerant BIU, which defined an asyncronous clocked bus that
resulted in 25% to 40% of the access time being used by wait states. The
instructions weren’t aligned on bytes or words, and took longer to decode. In
addition, the protections imposed on the objects often required multiple
memory accesses for permission checks when data was accessed. Finally, the
implimentation of the GDP on two chips instead of one produced a slower
product.

It’s high level architecture was similar to the Transputer systems, but it
was implimented in a way that was much slower than other processors, while the
T-414 not just innovative, but much faster than other processors of the time.

Part III: Rekursiv, an object oriented processor

The Rekursiv processor is actually a processor board, not a
microprocessor, but is neat. It was created by a manufacturing company called
Linn, to control their manufacturing system. The owner was a believer in
automation, and had automated the company as much as possible with Vaxes, but
wasn’t satisfied, so hired software experts to design a new system, which
they called LINGO. It was completely object oriented, like smalltalk (and
unlike C++, which allows some object concepts, but handles them in a
conventional way), but too slow on the VAXes, so Linn commissioned a
processor designed for the language.

This is not the only processor designed specifically for a language that
is slow on other CPUs. Several specialized LISP processors, such as the
Scheme-79 lisp processor, were created, but this chip is unique in its object
oriented features. It also manages to support objects without the slowness of
the Intel 432.

The Rekursiv processor features a writable instruction set, and is highly
parallel. It uses 40 bits for objects, and 24 bit addressing, kind of. Memory
can’t be addressed directly, only through the object identifiers, which are
40 bit tags. The hardware handles all objects in memory and on disk, and
swapping them to disk. It has no real program - all data and code/methods are
embedded in the objects, and loaded when a message is sent to them. There is
a page table which stores the object tags and maps them into memory.

There is a 64k area, arranges 16k X 128 bit words, for microcode,
allowing an instruction set to be constructed on the fly. It can change for
different objects.

The CPU hardware creates, loads, saves, destroys, and manipulates
objects. The manipulation is accomplished with a standard AMD 29203 CPU, but
the other parts are specially designed. It executes LINGO entirely fast
enough, and is a perfect match between language and CPU, but it can execute
more conventional languages, such as Smalltalk or C if needed - possible
simultaneously, as separate complete objects.

John Bayko (Tau).

Appendix A:

� �

==========

RISC and CISC definitions:
————————-

RISC refers to a Reduced Instruction Set Computer. IBM pioneered many RISC
ideas (and the acronym) in their 801 project. RISC ideas also come from the
CDC 6600 computer and projects at Berkley (RISC I and II and SOAR) and
Stanford University (the MIPS project). RISC designs call for each instruction
to execute in a single cycle, which is done with pipelines, no microcode (to
reduce chip complexity and increase speed). Operations are performed on
registers only (with the only memory access being loading and storing).
Finally, many RISC designs uses a large windowed register set to speed
subroutine calls (see the entry on SPARC for a description).

But despite these specifications, RISC is more a philosophy than a set of
design criteria, and almost everything is called RISC, even if it isn’t.
Pipelines are used in the 68040 and 80486 CISC processors to execute
instructions in a single cycle, even though they use microcode, and
experiments have shown that windowed registers can be added to CISC designs,
speeding them up in a similar way. Basically, RISC asks whether an instruction
is necessary, or whether it can be replaced by several simpler instructions
without a major performance loss. Typically multiply and divide instructions
are necessary, despite the fact they require multiple cycles to execute. The
advantage is that a simpler chip can run at a higher clock speed.

CISC refers to a Complex Instruction Set Computer. There’s not really a
set of design features to characterize it like there is for RISC, but small
register sets, large instruction sets, and use of microcode are common. The
philosophy is that if a complex instruction can result in an overal increase
in speed, it’s good. The disadvantage is that it’s harder to increase the
clock speed of a complex chip.

Microcode was a way of simplifying processor design. Even though it
resulted in instructions that are slower requiring multiple clock cycles, it
was thought it would allow more complex instructions to better support high
level languages, leading to better performance. However, most complex
instructions are seldom used.

Processor Classifications:
————————-

Arbitrarily assigned by me...

___CISC___RISC
| 14500B

4-bit | Am2903
| 4004
| 4040

8-bit | 1802
| 8008
| 8080 2650,SC/MP F8
| F100-L 650x,6800
|
| MCP1600 Z-80 6809

16-bit|

���

| 8086 TMS9900
| Z8000 65816
|
| 68000

32-bit| SPARC ARM
| 432 R2000
| Z80000 68040
| —<T9000>-Sword–HP-PA 88100
| Rekurs RS/6000 -fish 88110

64-bit| ——-<860>——
| Alpha
|

Appendix B:
==========

Appearing in IEEE Computer 1972:
——————————-

NEW
PRODUCTS

FEATURE PRODUCT

COMPUTER ON A CHIP

Intel has introduced an integrated CPU complete with
a 4-bit parallel adder, sixteen 4-bit registers, an accumula-
tor and a push-down stack on one chip. It’s one of a
family of four new ICs which comprise the MCS-4 micro
computer system–the first system to bring the power and
flexibility of a dedicated general-purpose computer at low
cost in as few as two dual in-line packages.

MSC-4 systems provide complete computing and con-
trol functions for test systems, data terminals, billing
machines, measuring systems, numeric control systems
and process control systems.

The heart of any MSC-4 system is a Type 4004 CPU,
which incudes a set of 45 instructions. Adding one or
more Type 4001 ROMs for program storage and data
tables gives a fully functioning micro-programmed com-
puter. Add Type 4002 RAMs for read-write memory and
Type 4003 registers to expand the output ports.

Using no curcuitry other than ICs from this family of
four, a system with 4096 8-bit bytes of ROM storage and
5120 bits of RAM storage can be created. For rapid
turn-around or only a few systems, Intel’s erasable and
re-programmable ROM, Type 1701, may be substituted
for the Type 4001 mask-programmed ROM.

MCS-4 systems interface easily with switches, key-
boards, displays, teletypewriters, printers, readers, A-D
converters and other popular peripherals. For further
information, circle the reader service card 87 or call Intel

�
�

at (408) 246-7501.
Circle 87 on Reader Service Card

COMPUTER/JANUARY/FEBRUARY 1971/71

Appearing in IEEE Computer 1975:
——————————-

The age of the affordable computer.

MITS announces the dawning of the Altair 8800
Computer. A lot of brain power at a price that’s
bound to create love and understanding. To say
nothing of excitement.

The Altair 8800 uses a parallel, 8-bit processor
(the Intel 8080) with a 16-bit address. It has 78
basic machine instrcutions with variences ofer 200
instructions. It can directly address up to 65K bytes
of memory and it is fast. Very fast. The Altair
8800’s basic instruction sysle time is 2 microseconds.

Combine this speed and power with Altair’s
flexibility (it can directly address 256 input and 256
output devices) and you have a computer that’s
competitive with most mini’s on the market today.

The basic Altair 8800 Computer includes the
CPU, front panel control board, front panel lights
and switches, power supply (enough to power any
additional cards), and expander board (with room
for 3 extra cards) all enclosed in a hansome, alum-
inum case. Up to 16 cards can be added inside the
main case.

Options now available include 4K dynamic mem-
ory cards, 1K static memory cards, parallel I/O
cards, three seial I/O cards (TTL, R232, and TTY),
octal to binary computer terminal, 32 character
alpha-numeric display terminal, ASCII keyboard,
audio tape interface, 4 channel storage scope (for
testing), and expander cards.

Options under development include a floppy disc
system, CRT terminal, line printer, floating point
processor, vectored interrupt (8 levels), PROM
programmer, direct memory access controller and
much more.

PRICE
Altair 8800 Computer: $439.00* kit

$621.00* assembled

prices and specifications subject to change without notice

For more information or our free Altair Systems
Catalogue phone or write: MITS, 6328 Linn N.E.,
Albuquerque, N.M. 87108, 505/265-7553.

*In quantities of 1 (one). Substantial OEM discounts available.

� �

[Picture of computer, with switches and lights]

Appendix C:
==========

Bubble Memories:
—————

Certain materials (ie. gadolinium gallium garnet) are magnetizable easily
in only one direction. A film of these materials can be created so that it’s
magnetizable in an up-down direction. The magnetic fields tend to stick
together, so you get a pattern that is kind of like air bubbles in water
squished between glass, half with the north pole facing up, half with the
south, floating inside the film. When a vertical magnetic field is imposed on
this, the areas in opposite alignment to this field shrink to circles, or
’bubbles’.

A bubble can be formed by reversing the field in a small spot, and can be
destroyed by increasing the field.

The bubbles are anchored to tiny magnetic posts arranged in lines. Usually
a ’V V V’ shape or a ’T T T’ shape. Another magnetic field is applied across
the chip, which is picked up by the posts and hods the bubble. The field is
rotated 90 degrees, and the bubble is attracted to another part of the post.
After four rotations, a bubble gets moved to the next post:

o o o
\/ \/ \/ \/ \/ \/ \/ \/

o

o_|_ _|_ _|_ _|_ _|_o _|_ _|_ o _|_ _|_ o_|_
| o | | | |

I hope that diagram makes sense.
These bubbles move in long thin loops arranged in rows. At the end of the

row, the bits to be read are copied to another loop that shift to read and
write units that create or destroy bubbles. Access time for a particular bit
depends on where it is, so it’s not consistant.

One of the limitations with bubble memories, why they were superceded, was
the slow access. A large bubble memory would require large loops, so accessing
a bit could require cycling through a huge number of other bits first. The
speed of propagation is limited by how fast magnetic fields could be switched
back and forth, a limit of about 1 MHz. On the plus side, they are
non-volatile, but eeproms, flash memories, and ferroelectric technologies are
also non-volatile and and are faster.

Ferroelectric and Ferromagnetic (core) Memories:
———————————————–

Ferroelectric materials are analogous to ferromagnetic materials, though
neither actually need to contain any iron. Ferromagnetic materials, used in
core memories, will retain a magnetic field that’s been applied to it.

Core memories consist of ferromagnetic rings strung together on tiny
wires. The wires will induce magnetic fields in the rings, which can later be

�
�

read back. Usually reading this memory will erase it, so once a bit is read,
it is written back. This type of memory is expensive because it has to be
constructed physically, but is very fast and non-volitile. Unfortunately it’s
also large and heavy, compared to other technologies.

Legend reports that a Swedish jet prototype (the Viggen I believe) once
crashed, but the flight recorders weren’t fast enough to record the cause of
the crash. The flight computers used core memory, though, so they were hooked
up and read out, and the still contained the data microseconds before the
crash occurred, allowing the cause to be determined.

Ferroelectric materials retain an electric field rather than a magnetic
field. like core memories, they are fast and non-volatile, but bits have to be
rewritten when read. Unlike core memories, ferroelectric memories can be
fabricated on silicon chips in high density and at low cost.

�
�

